Download this notebook from GitHub (right-click to download).

import hvplot.pandas  # noqa

scatter plots are a good first way to plot data with non continuous axes.

from bokeh.sampledata.iris import flowers as df

sepal_length sepal_width petal_length petal_width species
3 4.6 3.1 1.5 0.2 setosa
14 5.8 4.0 1.2 0.2 setosa
7 5.0 3.4 1.5 0.2 setosa
42 4.4 3.2 1.3 0.2 setosa
40 5.0 3.5 1.3 0.3 setosa
df.hvplot.scatter(x='sepal_length', y='sepal_width', by='species', 
                  legend='top', height=400, width=400)

As for most other types of hvPlot plots, you can add fields to the hover display using the hover_cols argument. It can also take “all” as input to show all fields.

df.hvplot.scatter(x='sepal_length', y='sepal_width', s='petal_length', scale=5, by='species', 
                  legend='top', height=400, width=600,
                  hover_cols=["species", "sepal_length", "sepal_width", "petal_width"])

You can add the ‘s’ parameter in scatter to specify the marker plot size and add the ‘scale’ parameter to specify what the scaling factor should be.

This web page was generated from a Jupyter notebook and not all interactivity will work on this website. Right click to download and run locally for full Python-backed interactivity.

Download this notebook from GitHub (right-click to download).