Polygons#

import hvplot.pandas  # noqa

Using hvplot with geopandas is as simple as loading a geopandas dataframe and calling hvplot on it with geo=True.

import geodatasets
import geopandas as gpd

chicago = gpd.read_file(geodatasets.get_path("geoda.chicago_commpop"))
chicago.sample(3)
Downloading file 'chicago_commpop.zip' from 'https://geodacenter.github.io/data-and-lab//data/chicago_commpop.zip' to '/home/runner/.cache/geodatasets'.
Extracting 'chicago_commpop/chicago_commpop.geojson' from '/home/runner/.cache/geodatasets/chicago_commpop.zip' to '/home/runner/.cache/geodatasets/chicago_commpop.zip.unzip'
community NID POP2010 POP2000 POPCH POPPERCH popplus popneg geometry
52 GARFIELD RIDGE 56 34513 36101 -1588 -4.398770 0 1 MULTIPOLYGON (((-87.73856 41.81871, -87.73853 ...
70 BEVERLY 72 20034 21992 -1958 -8.903237 0 1 MULTIPOLYGON (((-87.67308 41.73566, -87.66975 ...
64 WEST ENGLEWOOD 67 35505 45282 -9777 -21.591361 0 1 MULTIPOLYGON (((-87.65487 41.79417, -87.65487 ...
chicago.hvplot(geo=True)

Control the color of the elements using the c option.

chicago.hvplot.polygons(geo=True, c='POP2010', hover_cols='all')

You can even color by another series, such as population density:

chicago.hvplot.polygons(
    geo=True,
    c=chicago.POP2010/chicago.to_crs('EPSG:32616').area,
    clabel='pop density',
)
This web page was generated from a Jupyter notebook and not all interactivity will work on this website.