hvPlot.bar#
- hvPlot.bar(x=None, y=None, stacked=False, **kwds)[source]#
A vertical bar plot
A bar plot represents categorical data with rectangular bars with heights proportional to the values that they represent. The x-axis represents the categories and the y axis represents the value scale. The bars are of equal width which allows for instant comparison of data.
Reference: https://hvplot.holoviz.org/reference/tabular/bar.html
- Parameters:
- xstring, optional
Field name to draw x-positions from. If not specified, the index is used.
- ystring, optional
Field name to draw y-positions from. If not specified, all numerical fields are used.
- stackedbool, optional
If True, creates a stacked bar plot. Default is False.
- colorstr or array-like, optional.
The color for each of the series. Possible values are:
The name of the field to draw the colors from. The field can contain numerical values or strings representing colors.
A single color string referred to by name, RGB or RGBA code, for instance ‘red’ or ‘#a98d19’.
A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each series recursively. For instance [‘red’, ‘green’,’blue’].
- **kwdsoptional
Additional keywords arguments are documented in hvplot.help(‘bar’). See Plotting Options for more information.
- Returns:
holoviews.element.Bars
/ Panel objectYou can print the object to study its composition and run:
import holoviews as hv hv.help(the_holoviews_object)
to learn more about its parameters and options.
References
Bokeh: https://docs.bokeh.org/en/latest/docs/reference/models/glyphs/vbar.html
HoloViews: https://holoviews.org/reference/elements/bokeh/Bars.html
Matplotlib: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html
Pandas: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.bar.html
Examples
import hvplot.pandas import pandas as pd df = pd.DataFrame( { "actual": [100, 150, 125, 140, 145, 135, 123], "forecast": [90, 160, 125, 150, 141, 141, 120], "numerical": [1.1, 1.9, 3.2, 3.8, 4.3, 5.0, 5.5], "date": pd.date_range("2022-01-03", "2022-01-09"), "string": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], }, ) bar = df.hvplot.bar(x="string", y="actual", color="#f16a6f", legend="bottom", xlabel="day", ylabel="value") bar
You can overlay for example a line plot via
forecast_line = df.hvplot.line(x="string", y="forecast", color="#1e85f7", line_width=5, legend="bottom") forecast_markers = df.hvplot.scatter(x="string", y="forecast", color="#1e85f7", size=100, legend="bottom") bar * forecast_line * forecast_markers
df.hvplot.bar(stacked=True, rot=90, color=["#457278", "#615078"])
Backend-specific styling options#
alpha, bar_width, cmap, color, fill_alpha, fill_color, hover_alpha, hover_color, hover_fill_alpha, hover_fill_color, hover_line_alpha, hover_line_cap, hover_line_color, hover_line_dash, hover_line_dash_offset, hover_line_join, hover_line_width, line_alpha, line_cap, line_color, line_dash, line_dash_offset, line_join, line_width, muted, muted_alpha, muted_color, muted_fill_alpha, muted_fill_color, muted_line_alpha, muted_line_cap, muted_line_color, muted_line_dash, muted_line_dash_offset, muted_line_join, muted_line_width, nonselection_alpha, nonselection_color, nonselection_fill_alpha, nonselection_fill_color, nonselection_line_alpha, nonselection_line_cap, nonselection_line_color, nonselection_line_dash, nonselection_line_dash_offset, nonselection_line_join, nonselection_line_width, selection_alpha, selection_color, selection_fill_alpha, selection_fill_color, selection_line_alpha, selection_line_cap, selection_line_color, selection_line_dash, selection_line_dash_offset, selection_line_join, selection_line_width, visible
align, alpha, c, capsize, color, ec, ecolor, edgecolor, error_kw, facecolor, fc, hatch, log, visible
Examples#
TBD