Hist#
import hvplot.pandas # noqa
# hvplot.extension("matplotlib")
hist
is often a good way to start looking at continuous data to get a sense of the distribution. Similar methods include kde
(also available as density
).
from bokeh.sampledata.autompg import autompg_clean
autompg_clean.sample(n=5)
mpg | cyl | displ | hp | weight | accel | yr | origin | name | mfr | |
---|---|---|---|---|---|---|---|---|---|---|
330 | 32.7 | 6 | 168.0 | 132 | 2910 | 11.4 | 80 | Asia | datsun 280-zx | datsun |
237 | 30.0 | 4 | 97.0 | 67 | 1985 | 16.4 | 77 | Asia | subaru dl | subaru |
182 | 25.0 | 4 | 140.0 | 92 | 2572 | 14.9 | 76 | North America | capri ii | capri |
189 | 22.0 | 6 | 225.0 | 100 | 3233 | 15.4 | 76 | North America | plymouth valiant | plymouth |
238 | 30.5 | 4 | 97.0 | 78 | 2190 | 14.1 | 77 | Europe | volkswagen dasher | volkswagen |
autompg_clean.hvplot.hist("weight")
When using by
the plots are overlaid by default. To create subplots instead, use subplots=True
.
autompg_clean.hvplot.hist("weight", by="origin", subplots=True, width=250)
You can also plot histograms of datetime data
import pandas as pd
from bokeh.sampledata.commits import data as commits
commits = commits.reset_index().sort_values("datetime")
commits.head(3)
datetime | day | time | |
---|---|---|---|
4915 | 2012-12-29 11:57:50-06:00 | Sat | 11:57:50 |
4914 | 2013-01-02 17:46:43-06:00 | Wed | 17:46:43 |
4913 | 2013-01-03 16:28:49-06:00 | Thu | 16:28:49 |
commits.hvplot.hist(
"datetime",
bin_range=(pd.Timestamp('2012-11-30'), pd.Timestamp('2017-05-01')),
bins=54,
)
If you want to plot the distribution of a categorical column you can calculate the distribution using Pandas’ method value_counts
and plot it using .hvplot.bar
.
autompg_clean["mfr"].value_counts().hvplot.bar(invert=True, flip_yaxis=True, height=500)
This web page was generated from a Jupyter notebook and not all
interactivity will work on this website.