hvPlot.kde#

hvPlot.kde(y=None, by=None, **kwds)[source]#

The Kernel density estimate (kde) plot shows the distribution and spread of the data.

The kde and density plots are the same.

Reference: https://hvplot.holoviz.org/reference/tabular/kde.html

Parameters:
ystring or sequence

Field(s) in the data to compute distribution on. If not specified all numerical fields are used.

bystring or sequence

Field(s) in the data to group by.

bandwidthfloat, optional

The bandwidth of the kernel for the density estimate. Default is None.

cut

Draw the estimate to cut * bw from the extreme data points.

n_samplesint, optional

Number of samples to compute the KDE over. Default is 100.

filled

Whether the bivariate contours should be filled. Default is True.

kwdsoptional

Additional keywords arguments are documented in hvplot.help(‘kde’). See Plotting Options for more information.

Returns:
holoviews.element.Distribution / Panel object

You can print the object to study its composition and run:

import holoviews as hv
hv.help(the_holoviews_object)

to learn more about its parameters and options.

References

Examples

Lets display a ‘kde’ plot from wide data

import hvplot.pandas
import numpy as np
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 2.5, 3, 3.5, 4, 5],
    'y': [4, 4, 4.5, 5, 5.5, 6, 6],
})
df.hvplot.kde(color=["orange", "green"])

Lets display a ‘kde’ plot from long data using the ‘by’ attribute

import hvplot.pandas # noqa
import pandas as pd
import numpy as np
df = pd.DataFrame({
    'category': list('xxxxxxxyyyyyyy'),
    'value': [1, 2, 2.5, 3, 3.5, 4, 5, 4, 4, 4.5, 5, 5.5, 6, 6],
})
df.hvplot.kde(by='category', filled=False)

Backend-specific styling options#

alpha, color, fill_alpha, fill_color, hover_alpha, hover_color, hover_fill_alpha, hover_fill_color, hover_line_alpha, hover_line_cap, hover_line_color, hover_line_dash, hover_line_dash_offset, hover_line_join, hover_line_width, line_alpha, line_cap, line_color, line_dash, line_dash_offset, line_join, line_width, muted, muted_alpha, muted_color, muted_fill_alpha, muted_fill_color, muted_line_alpha, muted_line_cap, muted_line_color, muted_line_dash, muted_line_dash_offset, muted_line_join, muted_line_width, nonselection_alpha, nonselection_color, nonselection_fill_alpha, nonselection_fill_color, nonselection_line_alpha, nonselection_line_cap, nonselection_line_color, nonselection_line_dash, nonselection_line_dash_offset, nonselection_line_join, nonselection_line_width, selection_alpha, selection_color, selection_fill_alpha, selection_fill_color, selection_line_alpha, selection_line_cap, selection_line_color, selection_line_dash, selection_line_dash_offset, selection_line_join, selection_line_width, visible

alpha, c, capstyle, color, ec, ecolor, edgecolor, facecolor, fc, fill, hatch, interpolate, joinstyle, linestyle, linewidth, lw, step

Examples#

TBD

This web page was generated from a Jupyter notebook and not all interactivity will work on this website.