Labels#
import hvplot.pandas # noqa
labels
are mostly useful when overlaid on top of other plots. For instance in this case we will plot some capitals as points and then overlay (using the *
operator) labels.
import pandas as pd
df = pd.DataFrame(
{'City': ['Buenos Aires', 'Brasilia', 'Santiago', 'Bogota', 'Caracas'],
'Country': ['Argentina', 'Brazil', 'Chile', 'Colombia', 'Venezuela'],
'Latitude': [-34.58, -15.78, -33.45, 4.60, 10.48],
'Longitude': [-58.66, -47.91, -70.66, -74.08, -66.86]})
df
City | Country | Latitude | Longitude | |
---|---|---|---|---|
0 | Buenos Aires | Argentina | -34.58 | -58.66 |
1 | Brasilia | Brazil | -15.78 | -47.91 |
2 | Santiago | Chile | -33.45 | -70.66 |
3 | Bogota | Colombia | 4.60 | -74.08 |
4 | Caracas | Venezuela | 10.48 | -66.86 |
df.hvplot.points(x='Longitude', y='Latitude', padding=0.2, hover_cols='all', width=300) * \
df.hvplot.labels(x='Longitude', y='Latitude', text='City', text_baseline='bottom', hover=False) * \
df.hvplot.labels(x='Longitude', y='Latitude', text='Country', text_baseline='top', hover=False)
It’s also possible to provide a template string containing the names of the columns and reduce the font size.
df.hvplot.points(x='Longitude', y='Latitude', padding=0.2, hover_cols='all', width=300) * \
df.hvplot.labels(x='Longitude', y='Latitude', text='@{City}, {Country}', text_baseline='bottom', text_font_size='10px', hover=False)
This web page was generated from a Jupyter notebook and not all
interactivity will work on this website.