hvPlot.line#
- hvPlot.line(x=None, y=None, **kwds)[source]#
The line plot connects the points with a continuous curve.
Reference: https://hvplot.holoviz.org/reference/tabular/line.html
- Parameters:
- xstring, optional
Field name(s) to draw x-positions from. If not specified, the index is used. Can refer to continuous and categorical data.
- ystring or list, optional
Field name(s) to draw y-positions from. If not specified, all numerical fields are used.
- bystring, optional
A single column or list of columns to group by. All the subgroups are visualized.
- groupby: string, list, optional
A single field or list of fields to group and filter by. Adds one or more widgets to select the subgroup(s) to visualize.
- colorstr or array-like, optional.
The color for each of the series. Possible values are:
A single color string referred to by name, RGB or RGBA code, for instance ‘red’ or ‘#a98d19.
A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each series recursively. For instance [‘green’,’yellow’] each field’s line will be filled in green or yellow, alternatively. If there is only a single series to be plotted, then only the first color from the color list will be used.
- **kwdsoptional
Additional keywords arguments are documented in hvplot.help(‘line’). See Plotting Options for more information.
- Returns:
holoviews.element.Curve
/ Panel objectYou can print the object to study its composition and run:
import holoviews as hv hv.help(the_holoviews_object)
to learn more about its parameters and options.
References
Bokeh: https://docs.bokeh.org/en/latest/docs/reference/models/glyphs/line.html
HoloViews: https://holoviews.org/reference/elements/bokeh/Curve.html
Pandas: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.line.html
Matplotlib: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
Seaborn: https://seaborn.pydata.org/generated/seaborn.lineplot.html
Examples
import hvplot.pandas import pandas as pd df = pd.DataFrame( { "actual": [100, 150, 125, 140, 145, 135, 123], "forecast": [90, 160, 125, 150, 141, 141, 120], "numerical": [1.1, 1.9, 3.2, 3.8, 4.3, 5.0, 5.5], "date": pd.date_range("2022-01-03", "2022-01-09"), "string": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], }, ) line = df.hvplot.line( x="numerical", y=["actual", "forecast"], ylabel="value", legend="bottom", height=500, color=["steelblue", "teal"], alpha=0.7, line_width=5, ) line
You can can add markers to a line plot by overlaying with a scatter plot.
markers = df.hvplot.scatter( x="numerical", y=["actual", "forecast"], color=["steelblue", "teal"], size=50 ) line * markers
Please note that you can pass widgets or reactive functions as arguments instead of literal values, c.f. https://hvplot.holoviz.org/user_guide/Widgets.html.
Backend-specific styling options#
alpha, color, hover_alpha, hover_color, hover_line_alpha, hover_line_cap, hover_line_color, hover_line_dash, hover_line_dash_offset, hover_line_join, hover_line_width, line_alpha, line_cap, line_color, line_dash, line_dash_offset, line_join, line_width, muted, muted_alpha, muted_color, muted_line_alpha, muted_line_cap, muted_line_color, muted_line_dash, muted_line_dash_offset, muted_line_join, muted_line_width, nonselection_alpha, nonselection_color, nonselection_line_alpha, nonselection_line_cap, nonselection_line_color, nonselection_line_dash, nonselection_line_dash_offset, nonselection_line_join, nonselection_line_width, selection_alpha, selection_color, selection_line_alpha, selection_line_cap, selection_line_color, selection_line_dash, selection_line_dash_offset, selection_line_join, selection_line_width, visible
alpha, c, color, linestyle, linewidth, lw, marker, ms, visible
Examples#
TBD