hvPlot.box#
- hvPlot.box(y=None, by=None, **kwds)[source]#
The box plot gives you a visual idea about the locality, spread and skewness of numerical data through their quartiles. It is also known as box and whiskers plot.
box plots are most useful when grouped by additional dimensions.
Reference: https://hvplot.holoviz.org/ref/api/manual/hvplot.hvPlot.box.html
Plotting options: https://hvplot.holoviz.org/ref/plotting_options/index.html
- Parameters:
- ystring or sequence
Field(s) in the wide data to compute distribution from. If none is provided all numerical fields will be used.
- bystring or sequence
Field in the long data to group by.
- kwdsoptional
Additional keywords arguments are documented in Plotting Options. Run
hvplot.help('box')
for the full method documentation.
- Returns:
holoviews.element.BoxWhisker
/ Panel objectYou can print the object to study its composition and run:
import holoviews as hv hv.help(the_holoviews_object)
to learn more about its parameters and options.
References
Bokeh: https://docs.bokeh.org/en/latest/docs/examples/topics/stats/boxplot.html
HoloViews: https://holoviews.org/reference/elements/bokeh/BoxWhisker.html
Matplotlib: https://matplotlib.org/stable/plot_types/stats/boxplot_plot.html#sphx-glr-plot-types-stats-boxplot-plot-py
Pandas: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.boxplot.html
Backend-specific styling options#
box_alpha, box_cmap, box_color, box_fill_alpha, box_fill_color, box_hover_alpha, box_hover_color, box_hover_fill_alpha, box_hover_fill_color, box_hover_line_alpha, box_hover_line_cap, box_hover_line_color, box_hover_line_dash, box_hover_line_dash_offset, box_hover_line_join, box_hover_line_width, box_line_alpha, box_line_cap, box_line_color, box_line_dash, box_line_dash_offset, box_line_join, box_line_width, box_muted, box_muted_alpha, box_muted_color, box_muted_fill_alpha, box_muted_fill_color, box_muted_line_alpha, box_muted_line_cap, box_muted_line_color, box_muted_line_dash, box_muted_line_dash_offset, box_muted_line_join, box_muted_line_width, box_nonselection_alpha, box_nonselection_color, box_nonselection_fill_alpha, box_nonselection_fill_color, box_nonselection_line_alpha, box_nonselection_line_cap, box_nonselection_line_color, box_nonselection_line_dash, box_nonselection_line_dash_offset, box_nonselection_line_join, box_nonselection_line_width, box_selection_alpha, box_selection_color, box_selection_fill_alpha, box_selection_fill_color, box_selection_line_alpha, box_selection_line_cap, box_selection_line_color, box_selection_line_dash, box_selection_line_dash_offset, box_selection_line_join, box_selection_line_width, box_visible, box_width, cmap, outlier_alpha, outlier_color, outlier_fill_alpha, outlier_fill_color, outlier_hover_alpha, outlier_hover_color, outlier_hover_fill_alpha, outlier_hover_fill_color, outlier_hover_line_alpha, outlier_hover_line_cap, outlier_hover_line_color, outlier_hover_line_dash, outlier_hover_line_dash_offset, outlier_hover_line_join, outlier_hover_line_width, outlier_line_alpha, outlier_line_cap, outlier_line_color, outlier_line_dash, outlier_line_dash_offset, outlier_line_join, outlier_line_width, outlier_muted_alpha, outlier_muted_color, outlier_muted_fill_alpha, outlier_muted_fill_color, outlier_muted_line_alpha, outlier_muted_line_cap, outlier_muted_line_color, outlier_muted_line_dash, outlier_muted_line_dash_offset, outlier_muted_line_join, outlier_muted_line_width, outlier_nonselection_alpha, outlier_nonselection_color, outlier_nonselection_fill_alpha, outlier_nonselection_fill_color, outlier_nonselection_line_alpha, outlier_nonselection_line_cap, outlier_nonselection_line_color, outlier_nonselection_line_dash, outlier_nonselection_line_dash_offset, outlier_nonselection_line_join, outlier_nonselection_line_width, outlier_selection_alpha, outlier_selection_color, outlier_selection_fill_alpha, outlier_selection_fill_color, outlier_selection_line_alpha, outlier_selection_line_cap, outlier_selection_line_color, outlier_selection_line_dash, outlier_selection_line_dash_offset, outlier_selection_line_join, outlier_selection_line_width, whisker_alpha, whisker_color, whisker_hover_alpha, whisker_hover_color, whisker_hover_line_alpha, whisker_hover_line_cap, whisker_hover_line_color, whisker_hover_line_dash, whisker_hover_line_dash_offset, whisker_hover_line_join, whisker_hover_line_width, whisker_line_alpha, whisker_line_cap, whisker_line_color, whisker_line_dash, whisker_line_dash_offset, whisker_line_join, whisker_line_width, whisker_muted, whisker_muted_alpha, whisker_muted_color, whisker_muted_line_alpha, whisker_muted_line_cap, whisker_muted_line_color, whisker_muted_line_dash, whisker_muted_line_dash_offset, whisker_muted_line_join, whisker_muted_line_width, whisker_nonselection_alpha, whisker_nonselection_color, whisker_nonselection_line_alpha, whisker_nonselection_line_cap, whisker_nonselection_line_color, whisker_nonselection_line_dash, whisker_nonselection_line_dash_offset, whisker_nonselection_line_join, whisker_nonselection_line_width, whisker_selection_alpha, whisker_selection_color, whisker_selection_line_alpha, whisker_selection_line_cap, whisker_selection_line_color, whisker_selection_line_dash, whisker_selection_line_dash_offset, whisker_selection_line_join, whisker_selection_line_width, whisker_visible
bootstrap, boxprops, capprops, conf_intervals, flierprops, meanline, meanprops, medianprops, notch, show_caps, showfliers, showmeans, sym, whis, whiskerprops, widths
Examples#
Basic box plot#
import hvplot.pandas # noqa
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(25, 4), columns=list('ABCD'))
df.hvplot.box()
Wide data#
This example uses the tech stocks dataset to display a box plot from wide-form data, where each column represents a separate numerical series.
import hvplot.pandas # noqa
df = hvplot.sampledata.stocks("pandas")
df.hvplot.box(width=500, group_label='Stocks')
Long data#
This example uses the penguins dataset in long-form format to compare the distribution of penguin body mass across species using the by
keyword. Note that the box
method does not accept the x
keyword.
import hvplot.pandas # noqa
df = hvplot.sampledata.penguins("pandas")
df.hvplot.box(y="body_mass_g", by="species", width=400)
by
can accept a list of variables, in which case the categorical axis (here inverted with invert=True
) shows the variables nested.
import hvplot.pandas # noqa
df = hvplot.sampledata.penguins("pandas")
df.hvplot.box(y='body_mass_g', by=['species', 'sex'], invert=True)
Xarray example#
import hvplot.xarray # noqa
ds = hvplot.sampledata.air_temperature("xarray").sel(lat=[25, 50, 75])
ds.hvplot.box(y="air", by="lat")