Correlation Heatmap#
A heatmap showing pairwise correlation between numerical features in the penguins dataset. Darker colors represent stronger positive or negative correlations.
import hvplot.pandas # noqa
df = hvplot.sampledata.penguins("pandas")
# Compute correlation matrix
corr = df[[c for c in df.columns if c.split("_")[-1] in ("mm", "g")]].corr()
# Convert to long-form for heatmap
corr_df = corr.stack().reset_index()
corr_df.columns = ['variable_1', 'variable_2', 'correlation']
corr_df.hvplot.heatmap(
x='variable_1',
y='variable_2',
C='correlation',
cmap='coolwarm',
clim=(-1, 1),
title='Correlation Heatmap (Bokeh)',
hover_tooltips=[
("Variable 1", "@variable_1"),
("Variable 2", "@variable_2"),
("Correlation", "@correlation")
]
)
import hvplot.pandas # noqa
hvplot.extension('matplotlib')
df = hvplot.sampledata.penguins("pandas")
# Compute correlation matrix
corr = df[[c for c in df.columns if c.split("_")[-1] in ("mm", "g")]].corr()
# Convert to long-form for heatmap
corr_df = corr.stack().reset_index()
corr_df.columns = ['variable_1', 'variable_2', 'correlation']
corr_df.hvplot.heatmap(
x='variable_1',
y='variable_2',
C='correlation',
cmap='coolwarm',
clim=(-1, 1),
title='Correlation Heatmap (Matplotlib)',
)
corr_df.head()
variable_1 | variable_2 | correlation | |
---|---|---|---|
0 | bill_length_mm | bill_length_mm | 1.000000 |
1 | bill_length_mm | bill_depth_mm | -0.235053 |
2 | bill_length_mm | flipper_length_mm | 0.656181 |
3 | bill_length_mm | body_mass_g | 0.595110 |
4 | bill_depth_mm | bill_length_mm | -0.235053 |
See also
This web page was generated from a Jupyter notebook and not all
interactivity will work on this website.